Monthly Archives: May 2019

FANI IS NOT A CYCLONE, BUT A WARNING

cyclone-fani-article_660_051019051901

How many of us have consumed less food after seeing images of starving children? How many of us have used less water after seeing images of famine-stricken Karnataka villagers? Hardly any, or maybe a miniscule few.

Given that, how many of us will live consuming less of Earth resources so there will be lesser greenhouse gas emissions, after reading about the cyclone in Orissa? Possibly a handful. The drought conditions in one state and cyclone with windy rain in another state – yesterday it was at Kerala, Coorg, Chennai or Orissa and tomorrow it could be in Bangalore.

These are not freak accidental weather behaviours, but a manifestation of major climate changes emerging across the globe due to increased fossil fuel burning demanded by the millions of products that we are producing. Both the shop sales and e-commerce boast of lakhs of products to be brought, yet the human demand for more products is going unsatisfied.

Are these connected to cyclone fani? Yes. Bhubaneswar was ravaged in 1999 and remarkably recovered. But global warming has relentlessly increased, causing more cyclones worldwide, this time targeting Orissa coast again. The fact that we lost very fewer lives is laudable, but how often can we keep preparing for cyclones? What about the livestock, green foliage, power lines, roadways and infrastructure lost forever?

Videos showing buses overturning, small structures coming apart, trees being uprooted and all that proves that nature is yet more powerful than us. If we wish to claim control over her, please no way.

The alarming matter is cyclones are becoming less predictable, like the recent issue of ‘Down to Earth’ reports about the catastrophe at length. It is a paradox that Bhubaneswar is hard hit, the city designed by Otto Koenigsberger who wrote the book ‘Manual of Tropical Housing for India’ – an early textbook on climatology not only in India but also in the World. Unfortunately, we cannot blame either of them.

What is the connection between sustainable designs and cyclones? Across the world, nature is unleashing revengeful punishments against humans in multiple forms and locations. Cyclone is not an event of today but an accumulated implication of our last few centuries of agriculture and urbanisation, hence a warning signal for the future.

Could we have designed and built such that our buildings will have less of manufactured materials, hence lower embodied energy, which means fewer carbon emissions with reduced greenhouse gases that do not lead to ozone layer depletion, hence cause less global warming?

Resilience to risks and adoption to climate change are the mantras today, instead of eliminating the risks and stopping the change. At this rate, it will be too late.

Can stakeholders of the construction industry – promoters, owners, builders, material manufacturers, designers, managers, marketers, at large offer such solutions that may minimise possible future cyclones?

 

 

 

Build sensibly or perish

If we ignore valuable advice given by architects of yore and construct buildings against the laws of nature, we are doomed.

18BGPLEAD2

Victor Olgyay is the name few hundreds would have heard of in India and few thousands in the whole world today. Nearly 60 years ago, he started working on his book ‘Design with Climate” which got published in 1963. If he could advise us how do design sensitively and comfortably so long ago, why do we continue to ignore his wisdom? Some of the research topics he wrote about were arrived at much before him too.

Many forewarning kinds of books appeared shortly thereafter. ‘Silent Spring’ by Rachel Carson published in 1969 was path-breaking research on how chemicals are negatively impacting nature, mainly focusing on those which were used in agriculture, pest control and related issues. The organic movement now spreading wide has made people aware of all these.

Another early text, ‘Man Climate and Architecture’ by Baruch Givoni, got published in 1969, making the 1960s a decade of awareness building. However, after 50 years, the use of construction chemicals both in numbers and quantity is growing at an alarming upward curve.

India should be proud of the fact that it is among the first in the world to have had its own book on designing eco-friendly architecture, albeit written by a German. ‘Manual of Tropical Housing’ by Koenigsberger and others was published in 1973, and for more than 45 years we have an early manual for reference.

We have our own manual on climatology, but how much of it do we follow except as a textbook in colleges? How many students who study it for examinations forget it soon after and design architecture against climate? Why and who influences our construction industry decisions?

‘Design with Climate’ by Victor refers not only to all the basics of climate in general but applies that knowledge to design and construction. It contains topics such as an adaptation of shelter to climate; effects of climate on man; solar controls; bioclimatic charts; regional characters; microclimatic effects; basic forms of houses; morphology of town structures; thermal effects of materials; designs for different climatic zones and such others. Even though the book focuses on the U.S., the theory is applicable universally.

As such, more commonly needed data on wind, airflow patterns, heat, solar glare, sky factors, Sun path diagrams, shading devices, light intensities, passive cooling methods, lessons from traditional architecture, implications of massing and such others are all there. It is amazing to see how Victor attempted to cover a wide variety of topics with actual calculations using the early instrumentation available, which is so close to the more realistic ones available today with all software.

In many ways, its subtitle, ‘Bioclimatic approach to regionalism’ was the original contribution of Olgyay. This thought process, directly or indirectly, later led to many terminologies such as Bio-mimicry, Biomorphism, Biophilia, critical regionalism, eco-friendly ideas, local architecture, sustainable designs, green buildings and so on, and we can read shades of bioclimatic approaches in many other related theories like New Urbanism or even in Zero Carbon Cities.

It is easy to say Victor was ahead of his times to thank him, but it is a pity that we pay no attention to his research and advice even now, continuing to design against climate. It is time to realise climate change has already gone beyond our control and merely trying to design with climate will not stop the juggernaut. We have hurt, angered and irritated climate so much that now she is retaliating by warming up and speeding up in the form of cyclones, hurricanes and tsunamis.

Listening to Victor Olgyay and many others could have saved the east coast of India, mainly Bhubaneshwar and Puri, from being devastated by cyclone ‘Fani’. Are we able to see the connection between designing with climate and cyclones like ‘Fani’? If we are not, we as the human race are doomed.

For a ‘mudcrete foundation’

The composition may vary between places, though the basic considerations may include cement as the binding material.

11bgp-MudcreteFoundation1jpgThe first material early humans discovered for their construction purposes must have been mud under their feet and strangely it continues to be valid even today.

To deepen this exciting thought, just imagine a case where we dig out mud and put it back as the foundation! Yes, it was proven as a simple and fast system in many villages of Karnataka for small houses.

Excavated mud is added with broken tiles, stones or pottery with jaggery, lime and water. The mix is well trampled for two days while keeping wet, so it gains the required strength to be placed back.

Despite being a time-tested method, mainstream-size stone approach replaced it, and now sadly, the concrete column foundation is side-lining even the stone one, though RCC is mostly unwanted, costing more and damaging nature even more.

Concrete is like hard rock, but is a human product with cement, sand and coarse aggregate. If cement content can be reduced, the mix can last longer, but the prescribed mix strength cannot be compromised with. This is where mudcrete can step in.

Safe area

One safe area to replace concrete by mudcrete is in the foundation where the soil is hard with good bearing capacity. With both wall sides, the trench will never give way.

A normal 1:4:8 concrete mix at the trench bottom may act as a levelling and anti-termite course. Subsequently, mudcrete may be placed in layers of 9 inch each, compacted to about 6 inch thickness. At maximum two courses a day, a 3-ft.-deep foundation can be raised in 3 days, very safely.

The composition

The composition of mudcrete may vary between places, though the basic considerations may include cement as the binding material; sand to reduce shrinking and cracking; lime to resist termite attacks; mud as the base inert material; and brick bats, aggregates from rubble, broken stone pebbles or construction waste as the coarse material.

Proportions also change based on specific characteristics of mud and size of brick bats.

If the mud has more than half as gravel, about one-fourth silt and minimal clay, around 10% , it suits the purpose. Likewise, brick bats could be 20 to 40 mm in size, more of it in the lower sizes.

Given this, cement, sand, mud and the coarse material can be around 1:2:7:10 for a stronger foundation, and can increase mud to 10 and brick bats up to 20, based on site studies. Of course, all this needs expert supervision and engineering calculations.

A major step towards reviving it happened recently near Bengaluru for the house of Timmaiah along with students of architecture from KSSA, hoping to train the next generation. Mudcrete concept is diluted today for varied reasons, mainly lack of applied knowledge among the younger generation, hence failures. The ideal soil composition and availability of coarse aggregates could also be the causes.

However, there is no real reason why this should not be revived, at least for small and safe applications. May be it’s a matter of mind and time.

Mudcrete, not concrete

Natural materials last for long, while produced ones have to perish someday.

04bgp-GreensensG205QF96I3jpgjpgThis is a fact – longevity of construction hinges around one simple phenomenon: Natural materials last for long, while produced products have to perish someday. Even cement and concrete which are ruling the building industry today are not as strong or durable as the construction industry is making us believe so.

Incidentally, the idea of mixing fine particles, coarse aggregates and binding materials together was originally discovered during the days of Roman Empire, nearly 2200 years ago. They used broken bricks or stones with volcanic ash or pozzolona mortar, adding slaked lime too.

The Pantheon dome spanning 142 feet and rising to the same height has no reinforcement; it’s just the Roman Concrete, still standing tall after 2000 years. Innumerable markets, large gateways with wide vaults and many structures all over their ruled area stand testimony for this wonderful material. The parts of Roman ports submerged in the sea are still there, undisturbed.

After the fall of the Roman Empire, the making and building with concrete got lost. What we call as concrete today could be theoretically same as the older version, but the materials we mix and their proportions are not the same. However, we use the same name, despite the paradox that our concrete may not even live up to 100 years and in no way it can last 2000 years!

With minimal research and testing in this possibly new material that has been termed as mudcrete or earthcrete, not many people have confidence in this combination. However, in areas where load transfer has to happen only by compression, i.e. foundation, walls and such others, mudcrete is an economical and simple option.

Cheaper alternative

In civil engineering applications, stabilised mud mix has been successfully tried as a cheaper alternative for rock fill under roads and also in land reclamation. There have been a few structures built at Auroville. Many rural areas continue to mix mud with local brick waste and pebbles for varied applications. Yet, very little information is available from co-professionals and even on the Internet.

The quality and composition of mud varies between places; as such it is important to check the gravel, silt and clay contents of the mud to ensure the prescribed proportion is maintained. Brick bats, stone pieces and many other such materials are better suited as the larger aggregates.

Principles followed in rammed earth walls are also partly used here, though heavy ramming may be disastrous. If we were to revive mudcrete, many more ideas about how to use it will emerge.