Category Archives: fundamentals

It’s all in the materials

How to build stylish, yet eco-friendly homes in the wake of radical shift in construction systems. 

14bgpEcologyandMaterials-2jpg

If we invite friends home for dinner, the choice of vegetables is among the starting points to decide upon the menu. The same curry listed in the culinary books becomes a different tasting dish with a different vegetable. Not the best example to quote, but so too in buildings where the same building type, say a school, could become different with varied materials.

All construction materials are sourced from nature, such as stone, bamboo, mud, clay, thatch, lime and timber. Of course, water too comes from there, but is rarely acknowledged! It may surprise many to know that every industrially processed and manufactured material also comes from nature.

Lime as the raw material for cement; iron ore to make steel; bauxite as the ore for aluminium; sand as the basis of glass; clay for ceramics; finally crude oil and coal for plastics. So the equation is simple – as we increasingly use cement, steel, aluminium, glass, ceramics and plastics in construction, we are increasing the resource consumption, process wastes, transportation costs, demolition discards and as such, the embodied energy of the building, which directly contributes to greenhouse gas emissions, global warming and climate change.

There have been radical shifts in construction systems today, especially in the multi-storey sector, yet standard foundations, walls, lintels, beams and roofs dominate the majority of projects.

Here, materials contribute more than building technology in making the building eco-friendly. This is not to demean construction options – more than half-a-dozen foundation types exist; roofs could be done in a dozen ways; walls can be built in more than 15 ways, and floors have multiple choices – but only to mention the sad state of affairs where very few easy-to-do constructions practises are now popular. Most houses are being built with just one type of foundation, wall and one type of roof!

Strange combinations

In the past, every region had limited access to materials, hence the local vernacular style evolved which today may be wrongly felt by many as simple and monotonous. But that alone need not drive us to design strange combinations of modern materials which by default have lesser choices. Computer software applications with virtual or augmented reality generated images and animated walk-through complete the act of selling design easy ideas.

So, we end up with varied elements, forms, colours and combinations of surfaces to create what is today felt as attractive and unique elevations. Majority of them rely upon RCC frame construction, cement block or cheaper brick masonry, walls plastered and finished with putty, primer and paint.

Public buildings get finished with façade treatments, cladding panels and glass. How many of these are truly attractive, have a sense of collective aesthetics and follow the time-tested theories of beauty are questionable. Hence, the cacophony of architecture in every street, neither aesthetical nor ecological.

Plastered cement block wall coming in varied colours consumes much more of resources, uses chemicals and has more embodied energy than natural mud, stone or exposed clay blocks. As such, minimising cement blocks and painting are among the first step towards eco-friendly architecture. Zero maintenance by avoiding the need to re-paint, hence reduction in life cycle costs comes as a bonus point!

Ecological natural materials provide unlimited options towards wall elevations unlike what many people think. The variety possible by different material mix, pattern making, proportions, stylistic approaches and daylight throw far exceeds what the standard plastered walls offer. It’s the market at large looking for less work and more profits which undermines the aesthetic quality and environmental values of building with ecological materials.

As climate change is threatening every aspect of our lives, let us walk ecological sensitivity in every aspect of our constructions.

Single material, many uses

Mangalore tiles could be used to build walls, roofs, pavers and more.

14BGPTILES1

Majority of Indians were and still are used to having a space in the house where they could be eating at noon, children playing in the evening and cousins staying as guests sleeping there at night. The space we enter into on the first floor, often called a family hall, is even now considered for such varied roles.

Termed as ‘multi-functional spaces’ in architectural language, they have been among the basic principles of saving resources by minimising the need for multiple rooms for multiple requirements. While this has been commonly known and is continuing, what is forgotten is the idea of materials being multifunctional.

Buildings had to depend upon the few local resources for all construction needs, so people learnt how to use them with minor modifications. This also led to high theories like ‘single material approach’ much advocated by thinking architects such as Shankar Kanade and his brother Navanath. We may connect the visual powers of Taj Mahal, White House or Red Fort for their single material.

When Govindarajan, retired from IFFCO, desired to have a small farmhouse in his land, he could not but notice how people around the village built. He chanced to see a wall built with Mangalore tiles and wondered what’s the roof tile doing in the wall.

Discarded low-quality pieces and tiles from demolished houses not good for re-use get the common preferences here. Besides, one could see them on compound walls, edging a pathway in the garden, topping a parapet wall or even as pavers in broken condition. These tiles are very good at compression, hence we can load lots of weight on them!

Easy to build

A wall with Mangalore tiles is easy, cheap and fast to build with. With the rock hard tile transferring most of the load, the role of mortar joint is reduced to a levelling course. Cement mortar does not stick well to the surface, hence stabilised mud mortar is both appropriate and economical.

Routinely, these walls were inside and outside plastered. If built with stabilised mud and left exposed to sun and rain, they can perform very well on multiple fronts. They keep the house much cooler, thanks to an undulating and micro-shading surface which does not absorb much of solar heat. With a coat of lime, the walls come alive with a rare texture.

Local practices of today are being ignored in the face of regional or global ideas, but let us remember when these ideas were attempted in the past, they were not called as local practices.

They were the mainstream practices of the day, with no exposure to the global of the day. Apparently, these neglected and seemingly insignificant ideas were sustainable, while much of our celebrated newer and engineered construction ideas do not seem to provide a trouble-free stay for even two decades.

Without localisation and without realising the multifunctional potentials of each material and each technique, we cannot achieve a sustainable future.

When Nature warns building sector

Cyclone Fani devastated infrastructure because we ignored sustainable designing and healthy construction practices. 

08BGPINDIAFANI

How many of us have consumed less food after seeing images of starving children? How many of us have used less water after seeing images of famine-stricken Karnataka villagers? Hardly any, or may be a minuscule few.

Given that, how many of us will live consuming less of Earth’s resources so there will be lesser greenhouse gas emissions, after reading about the cyclone in Odisha? Possibly a handful. The drought conditions in one State and cyclone with windy rain in another State – yesterday it was in Kerala, Coorg, Chennai or Odisha and tomorrow it could be in Bengaluru.

These are not freak accidental weather behaviours, but a manifestation of major climate changes emerging across the globe due to increased fossil fuel burning demanded by the millions of products that we are producing. Both the shop sales and e-commerce boast of lakhs of products to be brought, yet the human demand for more products is going unsatisfied. Are these connected to cyclone Fani? Yes. Bhubaneswar was ravaged in 1999, and remarkably recovered. But global warming has relentlessly increased, causing more cyclones worldwide, this time targeting the Odisha coast again. The fact that we lost very less lives is laudable, but how often can we keep preparing for cyclones? What about the livestock, green foliage, power lines, roadways and infrastructure lost forever?

Videos showing buses overturning, small structures coming apart, trees being uprooted prove that nature is more powerful than us. If we wish to claim control over her, please no way. The alarming matter is cyclones are becoming less predictable, as the recent issue of ‘Down to Earth’ reports about the catastrophe at length. It is a paradox that Bhubaneswar is hard hit, the city designed by Otto Koenigsberger who wrote the book ‘Manual of Tropical Housing for India’ – an early text book on climatology not only in India, but also in the world. Unfortunately, we cannot blame either of them.

What is the connection between sustainable designs and cyclones? Across the world, nature is unleashing revengeful punishments against humans in multiple forms and locations. Cyclone is not an event of today but an accumulated implication of our last few centuries of agriculture and urbanisation, hence a warning signal for the future.

Could we have designed and built such that our buildings will have less of manufactured materials, hence lower embodied energy, which means less carbon emissions with reduced greenhouse gases that do not lead to ozone layer depletion, hence cause less global warming?

Resilience to risks and adoption to climate change are the mantras today, instead of eliminating the risks and stopping the change. At this rate, it will be too late.

Can stakeholders of the construction industry – promoters, owners, builders, material manufacturers, designers, managers, marketers, offer such solutions that may minimise damage from possible future cyclones?

FANI IS NOT A CYCLONE, BUT A WARNING

cyclone-fani-article_660_051019051901

How many of us have consumed less food after seeing images of starving children? How many of us have used less water after seeing images of famine-stricken Karnataka villagers? Hardly any, or maybe a miniscule few.

Given that, how many of us will live consuming less of Earth resources so there will be lesser greenhouse gas emissions, after reading about the cyclone in Orissa? Possibly a handful. The drought conditions in one state and cyclone with windy rain in another state – yesterday it was at Kerala, Coorg, Chennai or Orissa and tomorrow it could be in Bangalore.

These are not freak accidental weather behaviours, but a manifestation of major climate changes emerging across the globe due to increased fossil fuel burning demanded by the millions of products that we are producing. Both the shop sales and e-commerce boast of lakhs of products to be brought, yet the human demand for more products is going unsatisfied.

Are these connected to cyclone fani? Yes. Bhubaneswar was ravaged in 1999 and remarkably recovered. But global warming has relentlessly increased, causing more cyclones worldwide, this time targeting Orissa coast again. The fact that we lost very fewer lives is laudable, but how often can we keep preparing for cyclones? What about the livestock, green foliage, power lines, roadways and infrastructure lost forever?

Videos showing buses overturning, small structures coming apart, trees being uprooted and all that proves that nature is yet more powerful than us. If we wish to claim control over her, please no way.

The alarming matter is cyclones are becoming less predictable, like the recent issue of ‘Down to Earth’ reports about the catastrophe at length. It is a paradox that Bhubaneswar is hard hit, the city designed by Otto Koenigsberger who wrote the book ‘Manual of Tropical Housing for India’ – an early textbook on climatology not only in India but also in the World. Unfortunately, we cannot blame either of them.

What is the connection between sustainable designs and cyclones? Across the world, nature is unleashing revengeful punishments against humans in multiple forms and locations. Cyclone is not an event of today but an accumulated implication of our last few centuries of agriculture and urbanisation, hence a warning signal for the future.

Could we have designed and built such that our buildings will have less of manufactured materials, hence lower embodied energy, which means fewer carbon emissions with reduced greenhouse gases that do not lead to ozone layer depletion, hence cause less global warming?

Resilience to risks and adoption to climate change are the mantras today, instead of eliminating the risks and stopping the change. At this rate, it will be too late.

Can stakeholders of the construction industry – promoters, owners, builders, material manufacturers, designers, managers, marketers, at large offer such solutions that may minimise possible future cyclones?

 

 

 

Build sensibly or perish

If we ignore valuable advice given by architects of yore and construct buildings against the laws of nature, we are doomed.

18BGPLEAD2

Victor Olgyay is the name few hundreds would have heard of in India and few thousands in the whole world today. Nearly 60 years ago, he started working on his book ‘Design with Climate” which got published in 1963. If he could advise us how do design sensitively and comfortably so long ago, why do we continue to ignore his wisdom? Some of the research topics he wrote about were arrived at much before him too.

Many forewarning kinds of books appeared shortly thereafter. ‘Silent Spring’ by Rachel Carson published in 1969 was path-breaking research on how chemicals are negatively impacting nature, mainly focusing on those which were used in agriculture, pest control and related issues. The organic movement now spreading wide has made people aware of all these.

Another early text, ‘Man Climate and Architecture’ by Baruch Givoni, got published in 1969, making the 1960s a decade of awareness building. However, after 50 years, the use of construction chemicals both in numbers and quantity is growing at an alarming upward curve.

India should be proud of the fact that it is among the first in the world to have had its own book on designing eco-friendly architecture, albeit written by a German. ‘Manual of Tropical Housing’ by Koenigsberger and others was published in 1973, and for more than 45 years we have an early manual for reference.

We have our own manual on climatology, but how much of it do we follow except as a textbook in colleges? How many students who study it for examinations forget it soon after and design architecture against climate? Why and who influences our construction industry decisions?

‘Design with Climate’ by Victor refers not only to all the basics of climate in general but applies that knowledge to design and construction. It contains topics such as an adaptation of shelter to climate; effects of climate on man; solar controls; bioclimatic charts; regional characters; microclimatic effects; basic forms of houses; morphology of town structures; thermal effects of materials; designs for different climatic zones and such others. Even though the book focuses on the U.S., the theory is applicable universally.

As such, more commonly needed data on wind, airflow patterns, heat, solar glare, sky factors, Sun path diagrams, shading devices, light intensities, passive cooling methods, lessons from traditional architecture, implications of massing and such others are all there. It is amazing to see how Victor attempted to cover a wide variety of topics with actual calculations using the early instrumentation available, which is so close to the more realistic ones available today with all software.

In many ways, its subtitle, ‘Bioclimatic approach to regionalism’ was the original contribution of Olgyay. This thought process, directly or indirectly, later led to many terminologies such as Bio-mimicry, Biomorphism, Biophilia, critical regionalism, eco-friendly ideas, local architecture, sustainable designs, green buildings and so on, and we can read shades of bioclimatic approaches in many other related theories like New Urbanism or even in Zero Carbon Cities.

It is easy to say Victor was ahead of his times to thank him, but it is a pity that we pay no attention to his research and advice even now, continuing to design against climate. It is time to realise climate change has already gone beyond our control and merely trying to design with climate will not stop the juggernaut. We have hurt, angered and irritated climate so much that now she is retaliating by warming up and speeding up in the form of cyclones, hurricanes and tsunamis.

Listening to Victor Olgyay and many others could have saved the east coast of India, mainly Bhubaneshwar and Puri, from being devastated by cyclone ‘Fani’. Are we able to see the connection between designing with climate and cyclones like ‘Fani’? If we are not, we as the human race are doomed.

Climate crisis, and the culprits

Degeneration of the atmosphere is mainly because of modern mechanical devices which have become part of our daily living. 

09bgp-greenPPGMD5D2QLK3jpgjpg.jpegAs schoolchildren, we started reading alphabets not as mere graphical forms, but as the starting letter of a larger word. So A for Apple, B for Ball, C for Cat, D for Dog and so on it goes. Imagine, if we were to start the same again to check what impacts ecology the most, it could be a bad start.

A can be for Atmosphere, but soon we may follow it with A for Agriculture, Accommodation and Administration, all of which in the ancient times effected ecology where human actions altered the landscape to cultivate; consumed resources to construct; and created systems to govern society with capital and operational expenditures.

In modern times, A can stand for Advanced Lifestyle, but equally well for Automobile, Air travel and Air conditioners. Incidentally, these three are strongly advocated by modernity to become the aspirations of every low and middle-income family, who constitute approximately 75 to 80% of the Indian population.

These three are also among the major human actions adversely affecting nature and leading to the climate crisis. For common people, they may not appear to do so directly, but are the indirect causes due to their production, operation, energy consumption and finally waste generation upon discarding. Even the climate subject experts do not go to the depths of varied components of lifestyle, their attributes and implications on atmosphere, but gloss over them broadly saying human actions are causing the climate crisis. Then, of course, there are many people who do not fully agree with this position too.

Take automobiles, for example. Though the first car was patented in 1886, the next 20 years would not have seen more than 200 cars on the road. There was increased production, but between the World Wars, more car companies were closed than founded. The handful few from Europe, U.S. and Japan survived into the 1940s when the real mass production of cars flourished.

As such, it is less than 75 years now that people are driving cars and less than 50 years with the worldwide spread. Most poor regions have very few cars, while more than 90% of Indians still own no vehicle at all. Yet, the havoc the automobile industry has caused to millions of years of fragile nature is frightening. Hundreds of pages of data pour in today, yet none of which has reduced either car production or car sales.

Immeasurable damage

In the U.S. alone, 75% of carbon monoxide and 25% of greenhouse gas emissions are caused by cars, besides many other toxic gases including ground-level ozone. Nearly three-fourths of all of U.S. gas consumption goes for cars. The resources consumed and waste generated in their production, sales, operation and finally scrapping or dumping is virtually immeasurable.

Given this, how do we analyse the impacts of our everyday living? How do we take ownership of our actions to realise we are digging our own graves? Do we need more advanced research on global issues or simple search into our personal matters?

A rammed wall with coloured earth

Faster construction, perks of low maintenance and aesthetics are the positives.

19bgp-greenppgnIs building with mud an outdated technology? Is it no more practical to do so, considering that a large number of manufactured and marketed materials have flooded our times, claiming better performance and perfection, besides variety?

This is a myth of sorts, which can be felt if we study the properties of mud, its durability and the range of aesthetic expression mud architecture achieves between different regions. With cob, adobe, soil cement block, interlocking mud blocks, rammed earth walls, pigmented walls and such others, the soil of the same place too can have multiple appearances.

Strangely, there are people who believe that natural materials like mud will have a supply problem, while factory produces like cement can be supplied forever. All manufactured materials require raw materials from some sources, mostly taken from nature itself, so they too have their limitations.

Architects, engineers and builders have built a wide range of elements using mud. To list a few, rammed earth foundation, stabilised soil cement block walls, different kinds of arches, corbelled projections, walls with inter locking mud blocks, vaults without shuttering, flat arch lintels, patterned and differently moulded blocks for parapets or compound walls, perforated walls in jaali, masonry domes without shuttering, mud block filler slab roofs, load-bearing pillars, rammed earth floor finishes, solid cob benches and fixed furniture, facia finishes, surface washes and such others have already proven themselves as doable and durable.

Should we believe that continuous innovation and constant change are the only paths towards a better future? Not really, with the carbon footprint of construction industry ever increasing. Fortunately many people today talk about the need to revive the past wisdom and blend it with modern times. But how many are willing to change the course towards natural materials is the million dollar question, especially if there are business risks associated with real estate and construction investments.

One mode of achieving it can be by value addition to the traditional mud construction. Patterned rammed earth walls have proven to be a pointer here, with increasing popularity. The mud composition needs to be the same as for other mud walls with around 15% of clay and silt each, the rest being sandy soil, but mud of different colours needs to be procured to achieve the layering of the earth. Such ideas not only let the skill-sets of the mason continue but also make them feel proud of their accomplishments.

The challenge is facing each one of us. The ecological advantages of minimising on cement, the financial advantages of faster construction, the life cycle advantages of low maintenance and the visual advantages of aesthetics of earthy construction need to be reached out to the masses.

In promoting mud architecture, each one associated with the construction sector, from the mason to the media, can play a role.

Building walls with earth

With scientifically improvised technology, mud buildings can be made to last for centuries, contrary to common belief.

12bgp-greensense2nirmithi

It is a curious phenomenon – we all live in a planet called Earth, walk upon it, build shelters with it, and eat from it, yet we are on our way to destroy it As such, re-connecting with the Earth appears to be among the major solutions to the climate crisis. Given this, in the construction sector, we need to return to Earth, in all its terms and versions like soil, mud, terracotta, clay, silt, gravel, sand or stone.

Let us ask ourselves a simple multiple-choice question. Among all existing structures in the world, what could be the most commonly found wall material? Choice of answers – stone, mud, burnt bricks, wood. Anyone with common sense may answer it as ‘it could be mud’. Besides being the most common and most historic, mud walls have much to tell about how we lived in the past, for they sheltered the history of human civilisations. Incidentally, mud walls have a future too, in these days of climate change and ecological challenges.

The construction industry today is being blamed for one-third of GHG (Green House Gas) emissions, hence is at a crossroads. To mitigate this crisis, there is an urgent need to minimise manufactured materials and promote natural materials. The least we can do is to attempt a synthesis of traditional construction systems and modern creativity.

This is where mud architecture comes in handy. The methods of improvising traditional systems have re-validated the use of mud, to claim a pole position towards sustainable architecture.

No modern material replacing mud is yet to equal all the qualities of mud walls. It has the lowest cost in most regions; lowest embodied energy; highest insulation from heat gain; option of using mud plastering; a possibility of coating wide range of natural colours; option for bamboo or steel reinforcement; and can be used for all parts of the buildings right from foundation to roof. With scientifically improvised technology today, mud buildings can be made to last for centuries. Unfortunately, too many myths have been spread about mud, including it cracks, taking time to build, difficult to repair, monotonous and such others, as if modern construction methods are devoid of all these. This myth has come to stay, despite the fact that the way traditional mud houses lasted for centuries modern ones may not, which everyone is aware of.

So, the hesitation to build an earthy building appears to come more from fear and apprehension, than from knowledge and experience. Fortunately, mud walls are making a big return in modern architecture, though it is limited to certain regions only.

The technology of rammed earth walls has now been researched into fairly deeply and proven by various institutions such as Mrinmayee, Auroville Earth Institute, and Hunnarshala Foundation, besides many individual consultants. It is time to consider building walls with earth seriously, to save ourselves.

Raw, rustic, artistic

When MES School of Architecture at Kuttipuram instituted an Award for Sustainable Living, its natural choice was Mohan Chevara, Rukmini and family.

08bgp-greensensGDA5386EA3jpgjpg

As this essay is being written and read this week, the media is full of news on the ever increasing climate crisis. A recently published IPCC (Inter-governmental Panel for Climate Change) report states that the world is warmer by 1.2 degree Celsius compared to the pre-industrial era. At this rate, we could be warmer by 1.5 degrees by 2030, much earlier than what was predicted in the last report.

The 24th CoP (Conference of Parties) is now being held at Poland with leaders from 197 nations converging at one place, hoping to converge on one decision – to resolve implementing the declarations of various past climate conventions. The former is sure, but the latter is doubtful.

This is not to connect the heads of state with climate change, but to remind all of us that we all are responsible for the crisis and the solution are within us. One such family that resolved to live with nature and practice eco-friendly living is the Chevara family near Palakkad.

When MES School of Architecture at Kuttipuram instituted an Award for Sustainable Living recently, the choice of its first recipient was Mohan Chevara, Rukmini and family.

The couple left their comfortable urban occupations in art and pharmacy education respectively and moved into a farming community which they started with a group of like-minded friends. Not believing in the commercialised school systems of today, they home-schooled their two daughters with many skill-sets, but no college degrees. Growing their own food with groundwater, their dependency on externalities was meager.

The family built a small 500 sq. ft. the house there all by themselves, except for electrician and roof carpenter, which naturally took time, but it came close to being with nature. Interwoven spliced bamboo applied over with mud mortar (wattle and daub) walls were adorned with has reliefs; frameless shutters made of split bamboo hung from top, covering the small windows with bamboo grills; bookshelves and ledges were made of bamboo; bamboo steps led to a compact mezzanine; cooking was in a tiny corner with firewood and gas as may be needed – it’s a lesson to learn from to check how less we need to live a basic life!

The house was raw, rustic but artistic. The rooms and spaces were tiny but were just about what we really need. A few material compromises and dependency on state electricity supply continues, for the project is still incomplete and health imperatives have made some demands on the final product.

Chevaras choose this lifestyle not out of compulsion of poverty, illiteracy or unemployment, but out of own choice to live with nature. They critique the modern urban living and wanted to take an alternative path to live sustainably.

Yet it was curious to note that they did not talk big and claimed to be saviors of ecology; it’s a simple way of life for them. We need more such people.

For a bright bathroom

It has to be designed carefully, with proper ventilation too.

17bgp-greensensGAV51784G3jpgjpg

In the Indian context, ‘bright bathroom’ sounds like a contradiction! Majority of bathrooms in urban houses, with attached toilet, are ill-lit and badly ventilated.

Of course, we have quick fix solutions, without studying the root causes for the above experience. Fit a high wattage electric bulb and have an exhaust fan. Despite these two devices which consume electricity, many toilets and bathrooms are still dark during the daytime.

Actually the bathroom needs a large opening to brighten it up. There is a belief that larger the opening, lesser the privacy, which has no basis at all – a large window with translucent glass can ensure total privacy while a thin gap between the ventilator frame and the shutter can be a clear peephole. Ventilators in most buildings being rather low, most users keep them shut for the fear of privacy, incidentally blocking both air and light.

The generation before us knew the principle of ventilation that the warmer stale air moves upwards, being light in weight; hence the early toilets were provided with voids just below the roof level. During those days, with no steel and glass, these wall top openings were left with no shutters, which facilitated total movement of stale air.

The idea of continuous lintel band at 7 feet level coupled with the trouble of clearing cobwebs from this high opening made people stop the toilet ventilators at 7 feet height. With no escape, the stale air above this level comes to stay inside itself.

Most exhaust fans are operated when we are using the toilet with the doors shut, so no fresh air passes through the whole depth of the toilet. All that the exhaust fans throw out is the air immediately around them which often is fresh, so the stink continues.

Besides the general reasons, light is a prerequisite in a bathroom while fresh air is needed both for health and dry interiors. Bathrooms and toilets have been subjects of so many hilarious essays, that we may never realise how much they have in them for a serious ecological analysis too!